US009442968B2

a2 United States Patent (10) Patent No.: US 9,442,968 B2

Meyer et al. 45) Date of Patent: Sep. 13, 2016
(54) EVALUATION OF VARIANT 6,519,580 B1 2/2003 Johnson et al.

CONFIGURATION USING IN-MEMORY 6,665,664 B2 12/2003 Paulley et al.

6,983,187 B2 1/2006 Kern
TECHNOLOGY 7,225,038 B2 5/2007 Kind
. 7,665,030 B2 2/2010 Sauermann et al.
(71) Applicant: SAP SE, Walldorf (DE) 7,730,053 B2 6/2010 Sauermann
(Continued)

(72) Inventors: Petra Meyer, Walldorf (DE); Sven
Liesecke, Mannheim (DE); Nadine

Gaertner, Speyer (DE) OTHER PUBLICATIONS

“In-memory database.” Wikipedia, the free encyclopedia. Jun. 10,
2015. <https://fen.wikipedia.org/wiki/in-memory database>.

(Continued)

(73) Assignee: SAP SE, Walldorf (DE)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 95 days.
Primary Examiner — Hosain Alam

(21) Appl. No.: 14/230,912 Assistant Examiner — Nicholas Allen

(22) Filed Mar. 31. 2014 (74) Attorney, Agent, or Firm — Jones Day
iled: ar. 31,

(65) Prior Publication Data 1)) ABSTRACT

US 2015/0278347 Al Oct. 1, 2015 A system, method, and computer program product for evalu-

(51) Int. CL ating V.ariant conﬁguration using in-memory technolqu.
GO6F 7/00 (2006.01) Embodiments receive configuration data and a selection
GO6F 17/30 (2006.01) conditiqn to. be sglyed, })ring Boolean selectior.l condition
G060 30/06 (2012.01) expressions into disjunctive normal form (DNF) in memory,
G060 50/04 (2012.01) jgin concrete configuration Value; with the selection condi-

(52) US.CL tion, and compare values. Embodiments aggregate the com-

parison results per AND-group with a minimum function,
and aggregate those results per OR-group with a maximum
function and output results of the selection condition for a

CPC ... GOGF 17/30327 (2013.01); GO6Q 30/0621
(2013.01); GO6Q 50/04 (2013.01); YO2P 90/30

. . . (2015.11) concrete configuration. Embodiments may employ SQL
(58) Field of Classification Search Script statements. Embodiments may use conjunctive nor-
CPC ..o GOG6F 17/30466; GOGF 7/30463; mal form (CNF) instead of DNF with corresponding aggre-
GOGF 17/30498; GOGF 17/30584: GOGF gation ordering. Embodiments may extend the pure normal
17/30463 forms to enable calculations, string operations, evaluation of
USPC ittt 707/646

non-fixed-value literals, multi-valued literals, in-lists, and
variant tables by translating and integrating them into the
pattern of conjunctive and disjunctive aggregations. Paral-

See application file for complete search history.

(6 References Cited lelization and complexity-ordered branch evaluations are
U.S. PATENT DOCUMENTS also provided.
5,812,840 A 9/1998 Shwartz
6,223,094 Bl 4/2001 Muehleck et al. 17 Claims, 15 Drawing Sheets
100
»
- 130
Y{\ (—) Xai LEVEL 3
122
/_\ (_I)Xdlj LEVEL 2
(—)xai LEVEL 1

102 104 106 108 110

US 9,442,968 B2

Page 2
(56) References Cited 2013/0018901 Al* 1/2013 Bnayahu GOG6F 17/30979
707/756
U.S. PATENT DOCUMENTS 2013/0054551 Al 2/2013 Lange
2013/0091170 Al1* 4/2013 Zhang G06Q 10/06313
8,484,208 B1* 7/2013 Raghavan GOGF 17/30941) 707/783
707/798 2013/0191809 A1* 7/2013 LOVlt .oovvovcercrrrnrs.n GO6F 8/75
8,498,880 Bl 7/2013 Marsten o 717/109
8,510,261 Bl 8/2013 Samantray 2013/0227638 Al* 82013 Giambiagi GOGF 21/00
8,533,142 B2 9/2013 Collier et al. . _ 726/1
2002/0165701 Al 11/2002 Lichtenberg et al. 2013/0246016 AL1* 972013 Fertig oo GOGN 5/02
2005/0065926 Al* 3/2005 Chencccccoo GOGF 17/30454 _ 703/2
2006/0052896 Al 3/2006 Woehler 2014/0040182 Al* 2/2014 Gilder GOGF 17/30578
2008/0010328 Al 1/2008 Moeller et al. 707/602
3k
2009/0210782 Al 8/2009 Denoual GO6F ;1/52/343147‘ OTHER PUBLICATIONS
2010/0121868 Al* 5/2010 Biannic GOG6F 17/3097 . . .
707/759 “Column-oriented DBMS.” Wikipedia, the free encyclopedia. Jun.
2010/0121869 Al 5/2010 Biannic 26, 2015. <https://en.wikipedia.org/wiki/Column-oriented__
2011/0213659 Al* 9/2011 Fontoura G06Q30/02 DPEMS>.
705/14.52 « : oy kL 1 .
201 1/0213767 Al E3 9/2011 Fontoura """""""" G06Q 30/08 Real-tlme Contr()l SyStem' Wlklpedla" the free ency010pedla" Ja'n'
707/722 16, 2014. <https://en.wikipedia.org/wiki/Real-time__control__sys-
2011/0225038 Al1* 9/2011 Fontoura GOG6F 17/30501 tem>.
705/14.49 European Search Report for EP 15161964, dated Jun. 10, 2015.
2011/0252073 A1* 10/2011 Pauly GO6F 17/30297 The SAP HANA Database—An Architecture Overview, IEEE Data
N) 707/812 Engineering Bulletin, vol. 35, Mar. 1, 2012, pp. 1-6.
2011/0295906 Al* 12/2011 Liu oo GOGF %(7)/73/2(5)5 SAP HANA Database—Data Management for Modern Business
Applications, Sigmod Record (vol. 40, No. 4), Dec. 1, 2011, pp.
2012/0041979 ALl* 2/2012 Lee .ccoovvvvvvecnnns GO6N 5/022 4551
707/776 T L . L
2012/0137108 Al* 5/2012 Koch. I oo GOGF 9/30018 European Office Action issued in European Patent Application No.
’ Zl2200 15 161 964.0, dated Dec. 14, 2015.
2013/0013392 Al* 1/2013 Kejariwal G06Q 30/0241
705/14.42 * cited by examiner

U.S. Patent Sep. 13,2016 Sheet 1 of 15 US 9,442,968 B2

FI1G. 1
100
5
130
Y{\ (—0) Xais LEVEL 3
/_\ (_I)Xdu LEVEL 2
J
(—.) Xdij p LEVEL 1

- / Ve e
/ / / / /

| [i
102 10(4 106 108 11

US 9,442,968 B2

Sheet 2 of 15

Sep. 13, 2016

U.S. Patent

(SN=AUINNOD)

YO0 (XANT'T=SASJO) ANV (dOLASAA=ASVD))

VO (AA=XIINNOD) ANV (dOLISTA=ASVD) ANV (TTI=90T0D))
TXONAANAJAA LOArd0

X(NIT ‘SASdO

SN :AAINNOD

0=as1vA dOLMSHd :ASVD

1=HN¥.L ANTd MOTO0D
‘NOILVINISTddTd *NOILVANDIANOD

SN=AUINNOD XNNIT=SASdO dOLMSAG=ASYVD HAA=AUINNOD JOLMSAC=ASV) qII=HOTOD
T 01z 807 907 POz w0z

// s \ Vi / \\

1 0

- Q

007 ¢ OIA

US 9,442,968 B2

Sheet 3 of 15

Sep. 13, 2016

U.S. Patent

NOLLVOTIDOV+
NOLLVINOIANOD
ALTHONOD HLIA NIOE T0OS OA ANA A0 ADNALSISHAd
1)
0 0 10149 | aaa MOT10D 4 11LY
! 1 T T AZIS I 11LY
1
I an1d | An19d AOT10D TILY
|o ANV | TVIALI'T \M\ wEm \\ E/ \\ a N\
LTASTA| L10SHd | L'1NSAA | "OIAINOD ,ESS, -LOVAVHD \rzc_;wmz SLANOLLONNSIAAADNHANAJAC)
AommmmoqoovmoAﬁ_mmavnz<AEH:T¢oqooz
ANTVA = DLLSIALIVIVHD (9V >
\\‘

00§

¢ "OIA

US 9,442,968 B2

Sheet 4 of 15

Sep. 13, 2016

U.S. Patent

add AO0TOD 4 TIL¥
1 AZIS T TILY
an1d AO0TOD I TILY
€OF \\\ _ dal al
HNTVA | JLLSTHALOVIVHD INOLLVOUAN SI|NOLLDONACSIA [ADNAANAJIAA
SI80 TILY
al al
zop |__OLINOD [AONIANTdAA
1 AZI1S SI180
an1da AO0TOD SI80
ANTVA al
08~ NOLLVINDIANOD | DILSTHALDOVIVHD | NOLLVINIDIANOD
LOdNI

A4 209) & BT

US 9,442,968 B2

Sheet 5 of 15

Sep. 13, 2016

U.S. Patent

! <180 TILY
. (0] al al
o0p LTASTA ‘ODILAINOD AINAANALAA
0 <180 1 TILF
1 <180 1 T1LY
anv al al al
SOb__ LINSHA DIANOD NOLLONALSIA [ADNAANHAdHAd
0 an1d S180 aad AO0T10D 4 TILY
1 T S180 T AZIS I TILY
1 an1da 180 anT1d AUAOTOD 1 TILY
TVIAILIT| AnT1vA al _ dal al
LTISHY [*OTANOD ["OTANOD | ANTVA | DILSTHIALDVAVHD [NOLLVOAN SI | NOLLONNALSIA | ADNAANAIAA
/
1]
LLVI'IVAA
\\\
ay "OIA 00y

U.S. Patent

FIG. 5

Sep. 13, 2016 Sheet 6 of 15

US 9,442,968 B2

»
| 502
INPUT CONFIGURATIONS
v 504
/'

INPUT TABLE WITH SELECTION
CONDITION AND CONFIGURATION
TO BE SOLVED

v

JOIN CONCRETE CONFIGURATION
VALUES WITH DNF OF SELECTION
CONDITION AND COMPARE VALUES

Y

AGGREGATE RESULT PER
AND-GROUP WITH MINIMUM
FUNCTION

v

AGGREGATE RESULT PER
OR-GROUP WITH MAXIMUM
FUNCTION

510
/

Y

OUTPUT RESULT OF SELECTION
CONDITION FOR CONCRETE
CONFIGURATION

512
/‘

U.S. Patent Sep. 13,2016 Sheet 7 of 15 US 9,442,968 B2

600

FIG. 6A FIG. 6B

‘ = AGGREGATION

O = SIMPLE BOOLEAN EXPRESSION
WITH 1 OR 2 OPERANDS,
INCLUDING COMPARISONS

U.S. Patent Sep. 13,2016 Sheet 8 of 15 US 9,442,968 B2

FIG. 7

700

AND

LENGTH =WIDTH

. = AGGREGATION

(O = GENERAL EXPRESSION:
- SIMPLE BOOLEAN EXPRESSION OR
- EXPRESSSION INVOLVING MORE THAN 1 CHARACTERISTIC OR
- EXPRESSION INVOLVING OPERATORS OTHER THAN = SUCH AS

<, >, NUMERIC OR STRING OPERATION WITH 1 OR 2 OPERANDS:
+, -, *, CONCATENATION, ETC.

US 9,442,968 B2

Sheet 9 of 15

Sep. 13, 2016

U.S. Patent

anyv

Ho

I8 “OIA

LHOTHH+S+HLATMA=HLONA 1= £

LHOTHH

48 "OId

008

+

StHLAIM S+H.LAIM=H.LONA1+€

S+HLAIM HLONHAT=€
* HLONHT:€ + *

aNVv

do

V8 "OIA

NOLLVYAdO ONRLLS 40 DIMANNN = O

SNOSIHVAINOD DONIANTINI
‘SANVHALO Z 90 T HLIM
NOISSTUIXA NVATOOd A TIIIS = O

U.S. Patent Sep. 13,2016 Sheet 10 of 15 US 9,442,968 B2

FIG. 9

900

U.S. Patent Sep. 13,2016 Sheet 11 of 15 US 9,442,968 B2

FIG. 10

1000

US 9,442,968 B2

Sheet 12 of 15

Sep. 13, 2016

U.S. Patent

£T=>H7ZIS [T=<AZIS

.

4001

01=UZI1S

{€T-1T 013 N1 AZIS

a11 "Old VII "Old

0011

US 9,442,968 B2

Sheet 13 of 15

Sep. 13, 2016

U.S. Patent

[d001
th@mmgﬂy (1001

_mOOA

HIYL NOLLVYAdO =
_ 4001

ATEVL INVIIVA = \/
NOLLVYEdO
onntLs 30 oraannN =

SNOSRIVJINOD ONIANTONI
‘SANVIAdO T 40 T HLIA
NOISSTHIXA NVATOOd ATIINIS = D

NOLLYOTuD0V = @)

q471 "D

U.S. Patent Sep. 13,2016 Sheet 14 of 15 US 9,442,968 B2

FIG. 13

1300

LOOPl LOOPl

US 9,442,968 B2

Sheet 15 of 15

Sep. 13, 2016

U.S. Patent

AVOdATN OL

HSNON OL

A A

NOY-ad OL dAd OL

(414!

/

oI

/ v

NVIOL4¢—p

HOVAIALNI
MAOMLAN

HOVATHALNI
LOdNI

AOVAYHLNI
AHOWHIN
TVNUYALXH

80vI

|/

11441

J

+

+

YLVd
VEO0dd

SNVEOO0Ud
NOLLVOI'1ddV

mc: K

Y

« SO49 WH.LSAS +

YAINRId

JYOLINOINW

HOVATALNI
TVIAHITI A
LAd.LAO

AIVAUHLNI
OddIA

SIvI .\ EE\

ndo

INHLSAS
ONILVIAdO

NVYH

so1d

N:E\

NOYd
AHOWNWIIN

rovi K

3:.\

i

0ovI

Pl "OIA

US 9,442,968 B2

1

EVALUATION OF VARIANT
CONFIGURATION USING IN-MEMORY
TECHNOLOGY

BACKGROUND

The present invention relates to efficient evaluation of
queries using in-memory databases, and in particular to
optimizing in-memory data management for variant con-
figuration.

Many different products are offered for sale with numer-
ous available features that define particular product variants.
Historically, customers may have been offered features that
were added to a standard product, or they may have been
allowed certain feature omissions or substitutions. One
customer may prefer to add air conditioning to a car as an
“option” when air conditioning is not a standard product
feature for example, while another customer may prefer a
convertible car that omits the standard product’s hard top.
The manufacturer may decide that since few customers are
likely to order convertible cars with air conditioning, that
product variant may not be offered for sale. A potential
customer who wanted such a product variant would there-
fore be disappointed, and a revenue opportunity may be
missed.

The trend toward full customization of a product line has
therefore become increasingly popular, along with more
flexible manufacturing. The potentially very large number of
product features that may specify particular product variants
complicates information management for sales, engineering,
and production. Variant configuration tools therefore help
ensure that a particular product variant having the desired
features may be provided. Such tools may prevent problems
such as the specification of mutually exclusive product
characteristics or product feature combinations that are not
offered for sale or are not available for assembly or delivery
at a given price or by a given schedule.

One aspect of variant configuration management is the
preparation of a bill of materials (BOM), which is a com-
plete, formally structured list of all the lowest-level com-
ponents needed to produce a particular product line, includ-
ing all possible provided product variants. BOM preparation
or “explosion” is an often difficult and time-consuming
process. Rather than simply creating a separate BOM for
each of many possible variants, manufacturers may instead
use configurable BOMs that describe the required compo-
nent parts for an entire product line as functions of specified
product variant features. These functions can become quite
complicated for fully customized products with many user-
selectable features. A database may be needed to manage the
mapping of the desired features that define the variant
configuration and all the components that each variant
requires.

In one database model of a configurable BOM, a product
feature or characteristic may be used to distinguish one
component part from another. A characteristic may include
a component name and a component quantity. For example,
a component name of “color” with a component quantity of
“red” could distinguish one laptop computer case from
another. Each component may have many characteristics,
such as “left”, “rear”, “LED”, and country of origin “Japan”
for a particular car tail light. Each characteristic of each
component may be used as part of a selection condition to
identify the required components of a product variant.
Although described above in terms of product assembly
from component parts, configuration management issues
may also arise in many other situations, and may involve

10

20

25

40

45

55

2

different types of components, such as pieces of equipment,
routings, documents, etc. Further, although selection condi-
tions are familiar to consumers when choosing products, in
this description selection conditions are used as exemplary
cases of a more general object dependency.

Evaluation of the possibly very complex object depen-
dencies during manufacturing resource planning (MRP) and
other processes is very time critical. The fastest available
databases thus may be required. In-memory databases that
primarily operate on data stored in a computer system’s
main memory tend to be faster than older databases that
required significant external secondary storage input/output
operations. In-memory databases may also perform data
operations other than calculations (i.e., comparisons, trans-
fers, etc.) much faster than they perform calculations. An
example of an in-memory database is SAP’s High Perfor-
mance Analytics Appliance (HANA™) database.

The execution speed of in-memory database operations
may however be strongly dependent on the arrangement of
data. Unfortunately, the evaluation of object dependencies is
not currently optimized for column store databases. Time-
consuming processes like BOM explosion management may
currently only be optimized for conventional row store
databases in scenarios without variant configuration. This
limitation severely restricts the utility of such in-memory
tools.

Accordingly, the inventors have developed an improved
approach to evaluation of variant configuration using in-
memory technology.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of a Boolean expression tree repre-
senting an object dependency in disjunctive normal form
(DNF), according to an exemplary embodiment.

FIG. 2 is a diagram of a Boolean expression tree evalu-
ation, according to an exemplary embodiment.

FIG. 3 is a diagram of a DNF selection condition joined
with a concrete configuration and aggregation, according to
an exemplary embodiment.

FIGS. 4A-4B are diagrams of DNF selection condition
evaluation detail, according to an exemplary embodiment.

FIG. 5 is a flowchart of an exemplary method of evalu-
ating object dependency for in-memory technology, accord-
ing to an exemplary embodiment.

FIGS. 6A-6B are diagrams of a pure DNF tree in a
standard format and a condensed format, according to an
exemplary embodiment.

FIG. 7 is a diagram of a dependency tree representing a
selection condition with non-fixed-value literals, according
to an exemplary embodiment.

FIGS. 8A-8C are diagrams of dependency trees with
non-fixed-value literals, according to an exemplary embodi-
ment.

FIG. 9 is a diagram of a first generalization of a pure DNF
tree into a dependency tree, according to an exemplary
embodiment.

FIG. 10 is a diagram of a second generalization of the
DNF tree into a dependency tree, according to an exemplary
embodiment.

FIGS. 11A-11B are diagrams of a dependency tree with an
in-list in a specific representation and a more general rep-
resentation, according to an exemplary embodiment.

FIGS. 12A-12B are diagrams of a final general depen-
dency tree with representations of special features used in
variant configuration, and a diagram legend, according to an
exemplary embodiment.

US 9,442,968 B2

3

FIG. 13 is a diagram of a final general dependency tree
denoting parallelization, according to an exemplary embodi-
ment.

FIG. 14 is a diagram of an exemplary computer system to
implement various embodiments.

DETAILED DESCRIPTION

As described more fully below, the embodiments dis-
closed permit improved evaluation of variant configuration
using in-memory technology. Configuration data and a
selection condition to be solved are inputs to the embodi-
ments. A processor may bring Boolean selection condition
expressions into disjunctive normal form (DNF) in memory.
DNF expressions comprise a set of OR operations applied to
a set of AND operations applied to logically negatable
literals. The processor may then join concrete configuration
values with the DNF selection condition, and compare
values. Embodiments may aggregate the comparison results
per AND-group with a minimum function, and may then
aggregate those results per OR-group with a maximum
function. The processor may then output results of the
selection condition for a concrete configuration. The
embodiments may utilize SQL Script statements.

Other embodiments may use conjunctive normal form
(CNF) instead of disjunctive normal form. CNF expressions
comprise a set of AND operations applied to a set of OR
operations applied to logically negatable literals. DNF may
be used as the default form as it fits customer data better in
most cases. DNF typically lists available options in more
human-intuitive form. However, one embodiment may cast
data into both forms to see which is optimal, i.e., has the
fewest number of expressions, so more complex literals may
be combined into smaller ones. The literals may comprise
fixed values that may be determined directly by compari-
sons, or in other embodiments the literals may be more
general. In some embodiments, determining the actual literal
values may be a pre-processing step.

Referring now to FIG. 1, a diagram is shown of a Boolean
expression tree 100 representing a selection condition in
DNEF, according to an embodiment. Selection conditions,
which typically need to be evaluated quickly, may be
modeled as or transformed into Boolean expressions. This
will generally have been done already during maintenance
of a selection condition or an object dependency. Class
positions, which may be used instead of selection condi-
tions, may also be transformed into Boolean expressions.
Evaluation may be viewed conceptually as joining an in-
memory database with the desired configuration.

Each such object dependency Boolean expression may be
visualized as a tree 100 with three levels. The first level,
referred to as Level 1 in FIG. 1, comprises a number of
literals X ;; that are of the format C,,=V ;,, where C; is a
characteristic and V ; is a characteristic value. Bach literal
of an object dependency expression, represented as exem-
plary items 102-110, represents the smallest concept of
entry, and may be logically negatable. (In this description,
true values are represented by a one and false values are
represented by a zero, per convention.)

The second level of the tree comprises a set of j AND (*
A7) terms, shown as items 120 and 122, resulting from the
evaluation of each corresponding group of literals in a DNF
selection condition. That is, each AND term (such as item
120) is true if all of its child literals (such as items 102, 104,
and 106) are fulfilled.

The third level of the tree comprises a set of i OR (“V)
terms, shown as item 130, resulting from the evaluation of

20

25

30

40

45

50

55

65

4

each corresponding group of AND terms in a DNF selection
condition. That is, each OR term (such as item 130) is true
if any of its AND terms (such as items 120 and 122) are
fulfilled.

One benefit of the disjunctive normal form is that expres-
sions may be evaluated easily by SQL. Each AND term
result may be viewed as the minimum of the result of its
related child nodes, and each OR term result may be viewed
as the maximum of the result of its related child nodes. A set
of Boolean expressions may thus be evaluated simultane-
ously and directly by an in-memory database with a few
native selections. An example of an in-memory database is
SAP’s High Performance Analytics Appliance (HANA™)
database, which may employ both row-based and column-
based data storage. Embodiments of the present invention
may therefore optimize the evaluation of object dependen-
cies for column-based data storage, which is often much
faster than row-based data storage for certain problems.

Referring now to FIG. 2, a diagram is shown of'a Boolean
expression tree 200 evaluation, according to an embodiment.
In this example, a set of literals 202-212 describe charac-
teristics of a computer, such as its color, type of case,
country, and operating system. The selection condition is
provided as a Boolean expression in DNF, with three literals
(202, 204, and 206) for one AND term (220), and two literals
for a second AND term (222). One literal (212) is alone,
denoting that AND aggregations may be optional.

While literals 204, 208, 210, and 212 are true, the others
(202 and 206) are not. The AND term 220 is false because
at least one of its related child nodes (202, 204, and 206) is
false. The AND term 222 is true because all of its related
child nodes (208 and 210) are true. As a result, the OR term
230 is true because at least one of its related child nodes
(212, 220, and 222) is true.

Referring now to FIG. 3, a diagram 300 is shown of a
DNF selection condition joined with a concrete configura-
tion and aggregation, according to an embodiment. In this
case, the selection condition is ((COLOR=BLUE) AND
(SIZE=L)) OR (COLOR=RED). One embodiment uses the
disjunctive normal form instead of the conjunctive normal
form because the business application program’s compila-
tion of the selection condition syntax is already stored in
DNF. Thus, the embodiment may efficiently derive the DNF
for the SQL interpretation from the business application
program’s existing compilation.

FIG. 3 depicts the conceptual structure of the table that
stores the DNF selection condition for SQL, and how the
embodiment may join it with a concrete configuration to
obtain a result. The persistence is shown in a table named
“dependencies”. The disjunction ID is introduced to group
the literals (two, in this case) that are connected by AND.
The concrete configuration desired is that COLOR=BLUE
and SIZE=L.. The result literal from the join is therefore true
for characteristic values that match the configuration, and
false for those characteristic values that do not match the
configuration. The literals are then aggregated by AND and
OR to produce a true result in this case.

Referring now to FIGS. 4A-4B, a diagram 400 is shown
of DNF selection condition evaluation detail, according to
an embodiment. FIG. 4A depicts input tables required to
perform the evaluation, while FIG. 4B depicts the evaluation
of the inputs of FIG. 4A. Each of the tables shown depicts
exemplary data storage operations that may be performed in
sequence, corresponding to exemplary SQL Script state-
ments provided herein. First, table 401 depicts an example
configuration; the table’s name is “configurations”. Here,
configuration ID #0815 has COLOR=BLUE and SIZE=L.

US 9,442,968 B2

5

Next, table 402 depicts an input table with a selection
condition (specified by dependency ID #4711) and a con-
figuration to be solved. Table 402’s name is “toBeSolved”.
Table 403 represents the object dependency as it goes into
the evaluation process.

Table 404 depicts a join of concrete configuration values
with the selection condition in DNF, and a comparison of
values. SQL Script statements that correspond to this table
are provided here:

executedCompare =
SELECT
inp.dependency__id,
inp.config_ id,
dep.disjunction_id,
dep.is__negation,
dep.characteristic,
dep.value AS dep_ value,
config.value AS config value,
CASE
-- in case negation flag is not set
WHEN dep.is_negation <> ‘X’ AND dep.value =
config.value THEN 1
-- in case negation flag is set
WHEN dep.is_negation = ‘X’ AND dep.value <>
config.value THEN 1
ELSE 0
END AS literal _result
FROM toBeSolved AS inp
INNER JOIN dependencies AS dep ON
dep.dependency__id = inp.dependency__id
INNER JOIN configurations AS config ON
config.config id = inp.config id;

Table 405 depicts aggregation results per AND-group,
with a minimum function. SQL Script statements that cor-
respond to this table are provided here:

executedAND =

SELECT
dependency__id,
config_id,
disjunction__id,
MIN(literal_result) AS and_ result

FROM :executedCompare

GROUP BY
dependency__id,
config_id,
disjunction__id;

Table 406 depicts aggregation results per OR-group, with
a maximum function. The result of the selection condition
evaluation for the concrete configuration may be outputted
by an embodiment. SQL Script statements that correspond to
this table are provided here:

executedOr =
SELECT
dependency__id,
config_id,
MAX(and__res) AS or_result
FROM :executed AND
GROUP BY
dependency__id,
config_id;

In general, rule-evaluation systems, such as those that
evaluate object dependencies, evaluate true/false conditions
in sequence and therefore need to do so quickly because the
rules to be evaluated may be very complex. In-memory
databases are often set-based, designed for performing

10

15

20

25

30

35

40

45

50

55

60

65

6

aggregations instead of calculations, for speed. Thus,
arranging AND and OR combinations of literals, whether
using DNF or CNF, is advantageous because converting
expressions to these forms allows evaluations to be per-
formed in two aggregation steps (one AND, one OR).
Aggregations may be done in parallel in in-memory data-
bases, taking further advantage of the fact that secondary
storage 1/O delays may be avoided. Even if the AND and OR
operations cannot be parallelized, literal evaluation may be
performed in parallel independent operations, followed by
separate AND and OR aggregations.

Referring now to FIG. 5, a flowchart 500 is shown
comprising an exemplary method for implementation of the
embodiments for evaluating object dependency in
in-memory databases described above. This method may be
implemented by a processor executing instructions in a
computer system, to be described, and the instructions may
be tangibly embodied in a computer-readable medium or
computer program product. The method execution may
begin at 502 when the processor may receive input configu-
rations, which may for example describe a possible product
line. At 504, the processor may receive an input table with
a particular selection condition and a desired configuration
to be evaluated. The configuration may describe a product
variant, and the selection condition may determine if the
variant requires a particular component or is a variant that
may be manufactured or sold or meets other requirements
for a product line, for example.

At 506, the processor may join concrete configuration
values with the selection condition (in DNF or CNF), and
compare values. At 508, the processor may aggregate the
results by AND-group with a minimum function (for the
case where DNF is used). At 510, the processor may
aggregate the results of the prior aggregation per OR-group
with a maximum function (for the case where DNF is used).
One of ordinary skill in the art will understand that when
CNF is used, the aggregation order will be the opposite, i.e.,
first an aggregation per OR-group followed by an aggrega-
tion per AND-group. At 512, the processor may output the
result of the selection condition for the concrete configura-
tion.

In some embodiments, extensions of DNF may add new
levels to the DNF tree to cover the special dependency
syntax used in following additional scenarios, which are
now each described in detail:

General literals: Literals form the leaves of the DNF tree.
Strictly speaking, literals in the context of a pure DNF tree
may only consist of simple Boolean comparisons. As pre-
viously noted, literals in a variant configuration dependency
may be more general. For example, a comparison in a
selection condition need not relate to a fixed value; there
may also be comparisons between two characteristics, and
there may be calculations involved, such as
“LENGTH=WIDTH+3".

Multiple values: In the evaluation of variant configuration
dependencies, the value of a characteristic is not necessarily
unique since characteristics may have multiple values. For
example, there may be a characteristic “extras” with values
“air conditioning” and “special color” and a selection con-
dition involving a literal “extras=air conditioning”. Such
literals may need to be evaluated for all values of the
characteristic.

In-lists: Dependencies may offer a special syntax element
called an “in-list” to describe a set and/or range of values.
For example, a selection condition may involve the condi-
tion “SIZE IN {10, 21-23}” which evaluates true if the

US 9,442,968 B2

7

integer characteristic size is 10, 21, 22, or 23. Such a
condition does not convert directly into a literal.

Variant tables: Dependencies may offer a special syntax
element called a “variant table”. Variant tables are lookup
tables for selection conditions. They may have columns for
the characteristics involved in the condition, and they may
contain the evaluation of a selection condition for combi-
nations of characteristics values. For example:

WIDTH STRENGTH HEIGHT
10 20 20 TRUE
10 10 20 TRUE

Referring now to FIGS. 6A-6B, a pure DNF tree 600 is
shown in FIG. 6A in the format previously shown and in
FIG. 6B in a format using the following rules and simpli-
fications for clarity:

Aggregation nodes, whether aggregated over via AND or

OR operators, are solid black circles.

Operation nodes that represent an operation such as a
comparison use a blackened-top-circle depiction.
Operation nodes involve only a specific predetermined
maximum number of operands. In one embodiment,
operation nodes may involve either one or two oper-
ands, as fewer table columns lead to better performance
in a particular in-memory database. However, this
design choice also means that an operation that
involves three or more operands may need to be split up
artificially.

Dotted lines indicate optional relationships.

Aggregation nodes are depicted with two child nodes, but
embodiments may have any number of child nodes in
an aggregation.

Pruning: There is full symmetry in a purely DNF tree,
meaning that all nodes of one level of the tree have the
same structure. In this description, only the lefimost
node for each level is depicted in its full structure. The
other nodes to its right are abbreviated and their child
nodes are omitted for clarity.

In the following description, the diagrams depict the
generic form a dependency may take, and the extended tree
is simply called the “dependency tree” to avoid confusion
with a pure DNF tree.

Referring now to FIG. 7, a dependency tree 700 is shown
representing a selection condition with non-fixed-value lit-
erals, according to an embodiment. In this depiction, an open
circle represents the more general literals used in dependen-
cies, as a reminder of their increased scope compared to
literals of a pure DNF tree. In this example, the dependency
tree represents a selection condition “LENGTH=WIDTH”,
where length and width are characteristics. This example
illustrates only a very simple literal used in a dependency,
but literals may involve any number of steps and operands.

Referring now to FIGS. 8A-8C, dependency trees 800
with non-fixed-value literals are shown, according to an
embodiment. FIG. 8A depicts a selection condition literal of
the form “3*LENGTH=WIDTH+5.” This literal may be
decomposed into a simple Boolean expression (depicted
with a blackened-top circle) that handles only the actual
comparison, and child nodes (depicted with a blackened-
side circle) may handle the separate determination of values
“3*LENGTH” and “WIDTH+5”.

FIG. 8B depicts a selection condition literal of the form
“3*LENGTH=WIDTH+5+HEIGHT.” The additional oper-

10

15

20

30

35

40

45

50

55

60

65

8

and “HEIGHT” may be handled separately, due to the design
choice of having a maximum of two operands per operation.

FIG. 8C depicts a dependency with nested complex
operations that handle additional operands or operations
through additional operation elements. Note that between
the nested levels of the tree, there is no aggregation in this
embodiment. Instead, the output of one operation may be
passed on as the input of the next higher level operation.

Referring now to FIG. 9, a first generalization 900 of the
pure DNF tree into a dependency tree is shown, according
to an embodiment. Generalization of the dependency tree
enables orderly evaluation of more general literals and
operations. Embodiments with this extended capability may
be of particular utility for variant configuration scenarios.

Referring now to FIG. 10, a second generalization 1000 of
the DNF tree into a dependency tree is shown, according to
an embodiment. This generalization considers extended lit-
erals and operations, as well as multi-valued characteristics.
Multiple values of a characteristic lead to a multiplication of
literals. In the example given above, characteristic “extras”
has values “air conditioning” and “special color” and a
selection condition demands “extras=air conditioning”. In
this embodiment, the selection condition may be checked for
each actual value of the characteristic. In this case, the
embodiment may perform two checks (i.e., with “air con-
ditioning” and “special color”) to determine if the selection
condition is fulfilled.

In the language of DNF this action appears as an addi-
tional “OR” aggregation level. Since every characteristic
may potentially have multiple values for the dependency
tree, the embodiment may add another aggregation node just
above the tree layer that deals with the characteristics.
Aggregations are fast in in-memory technologies, so this
approach is advantageous.

Referring now to FIGS. 11A-11B, a dependency tree 1100
with an in-list is shown in a specific and more general
representation, according to an embodiment. In the example
given above, the in-list “SIZE IN {10, 21-23}” may translate
into a small DNF of'its own: (size=10) OR ((size>=21) AND
(size<=23)). Theoretically, this condition could be reflected
in the already existing DNF structure in the dependency tree
as shown in FIG. 11A, or by appending it at the bottom of
the tree. However since the in-list is a feature used in the
leaves of the dependency tree, reflecting the condition in the
already existing DNF structure would greatly expand the
data volume of the dependency tree due to the combinatorics
involved.

One embodiment therefore adds another aggregation level
into the dependency tree to evaluate the in-lists “locally” as
leaves, rather than multiplying them into the DNF structure
shown in FIG. 11A. Note that the OR aggregation level
introduced to cover multi-value characteristics may be
reused for the aggregation of in-lists.

FIG. 11B depicts a general form of a dependency tree with
in-lists. The compressed loop box represents the nested
operation tree as described previously. This generalization
considers extended literals, operations, multi-valued char-
acteristics, as well as in-lists.

Referring now to FIG. 12A, a final general dependency
tree 1200 with representations of special features used in
variant configuration is shown, according to an embodiment.
This dependency tree also integrates in variant tables, which
are an alternative way of expressing a condition in a tabular
overview rather than in dependency syntax. Theoretically,
variant tables could be transformed and integrated into the
existing DNF structure contained in the dependency tree.
For similar reasons as for the in-list operator, in one embodi-

US 9,442,968 B2

9

ment variant tables may be treated separately. In this
embodiment, the variant tables are evaluated separately and
their result is merged with the results of the conditions that
are provided in non-variant table syntax.

In FIG. 12A, the variant table evaluation is represented by
a triangle symbol for the purpose of illustrating the structure
of the dependency tree clearly. Note that for the integration
of the variant table evaluation, in-lists cannot be combined
with variant tables. It is therefore sufficient to consider
variant tables at the first conjunction level (i.e., the “leaf
level” of the original, underlying DNF tree). FIG. 12B is a
legend summarizing the various representations described
above in this description. The final general dependency tree
contains representations of special features as used in variant
configuration, including extended literals and operations,
multi-valued characteristics, in-lists, and variant tables.

Referring now to FIG. 13, a final general dependency tree
1300 is shown denoting parallelization, according to an
embodiment. Processing parallelization is possible in this
embodiment only at the leaves of the tree, shown within the
enclosure. In another embodiment, an additional level of
parallelization may be implemented by separately process-
ing dependencies involving string operations and those
involving numeric operations. The separate processing com-
prises building up and evaluating separate, complete depen-
dency trees as described above, with one for numerics and
one for strings.

To summarize the extensions, in various embodiments,
the dependency tree may be literally grown from a standard
DNF tree. Additional, variant configuration specific features
may be incorporated by translating and integrating them into
the pattern of conjunctive and disjunctive aggregations. Due
to the alternating structure of disjunctions and conjunctions
at different levels, the dependency tree may store conditions
either in DNF or CNF. CNF may be implemented merely by
skipping the first disjunction in the root node in one embodi-
ment. While most of the dependency structure is best
represented in DNF, some features such as in-lists tend to be
closer to a conjunctive normal form.

In another embodiment, the normal form representation
used for individual dependencies and the features used
therein may be optimized per dependency. The DNF and
CNF dependency representations may be evaluated sepa-
rately.

Note that due to the splitting up of arithmetic calculations
into a separate “sub-tree” of the dependency representation
the following situation may arise: A selection condition
involves several branches connected with OR. One of these
branches is immediately evaluated to “true”, while another
branch contains a sub-tree of arithmetic operations. An
implementation that evaluates the calculation tree first,
before the aggregation across the OR-branches happens, is
inefficient. Thus, one embodiment may evaluate and aggre-
gate all simple OR-branches, and may evaluate the complex
OR-branches with calculations only if the simple ones
evaluate as “false”.

Referring now to FIG. 14, a computer system 1400 is
shown comprising an exemplary structure for implementa-
tion of the embodiments described above. Computer system
1400 comprises a central processing unit (CPU) or processor
1402 that processes data stored in memory 1404 exchanged
via system bus 1406. Memory 1404 may include read-only
memory, such as a built-in operating system, and random-
access memory, which may include an operating system,
application programs, and program data. Computer system
1400 may also comprise an external memory interface 1408
to exchange data with a DVD or CD-ROM for example.

10

15

20

25

30

35

40

45

50

55

60

65

10

Further, input interface 1410 may serve to receive input from
user input devices including but not limited to a keyboard,
a mouse, or a touchscreen (not shown). Network interface
1412 may allow external data exchange with a local area
network (LAN) or other network, including the internet.
Computer system 1400 may also comprise a video interface
1414 for displaying information to a user via a monitor 1416
or a touchscreen (not shown). An output peripheral interface
1418 may output computational results and other informa-
tion to optional output devices including but not limited to
a printer 1420 for example via an infrared or other wireless
link.

Computer system 1400 may comprise a mobile comput-
ing device such as a personal digital assistant or smartphone
for example, along with software products for performing
computing tasks. The computer system of FIG. 14 may for
example receive program instructions, whether from exist-
ing software products or from embodiments of the present
invention, via a computer program product and/or a network
link to an external site.

As used herein, the terms “a” or “an” shall mean one or
more than one. The term “plurality” shall mean two or more
than two. The term “another” is defined as a second or more.
The terms “including” and/or “having” are open ended (e.g.,
comprising). Reference throughout this document to “one
embodiment”, “certain embodiments”, “an embodiment” or
similar term means that a particular feature, structure, or
characteristic described in connection with the embodiment
is included in at least one embodiment. Thus, the appear-
ances of such phrases in various places throughout this
specification are not necessarily all referring to the same
embodiment. Furthermore, the particular features, struc-
tures, or characteristics may be combined in any suitable
manner on one or more embodiments without limitation.
The term “or” as used herein is to be interpreted as inclusive
or meaning any one or any combination. Therefore, “A, B or
C” means “any of the following: A; B; C; A and B; A and C;
B and C; A, B and C”. An exception to this definition will
occur only when a combination of elements, functions, steps
or acts are in some way inherently mutually exclusive.

In accordance with the practices of persons skilled in the
art of computer programming, embodiments are described
below with reference to operations that are performed by a
computer system or a like electronic system. Such opera-
tions are sometimes referred to as being computer-executed.
It will be appreciated that operations that are symbolically
represented include the manipulation by a processor, such as
a central processing unit, of electrical signals representing
data bits and the maintenance of data bits at memory
locations, such as in system memory, as well as other
processing of signals. The memory locations where data bits
are maintained are physical locations that have particular
electrical, magnetic, optical, or organic properties corre-
sponding to the data bits.

When implemented in software, the elements of the
embodiments are essentially the code segments to perform
the necessary tasks. The non-transitory code segments may
be stored in a processor readable medium or computer
readable medium, which may include any medium that may
store or transfer information. Examples of such media
include an electronic circuit, a semiconductor memory
device, a read-only memory (ROM), a flash memory or
other non-volatile memory, a floppy diskette, a CD-ROM, an
optical disk, a hard disk, a fiber optic medium, etc. User
input may include any combination of a keyboard, mouse,
touch screen, voice command input, etc. User input may
similarly be used to direct a browser application executing

US 9,442,968 B2

11

on a user’s computing device to one or more network
resources, such as web pages, from which computing
resources may be accessed.

While particular embodiments of the present invention
have been described, it is to be understood that various
different modifications within the scope and spirit of the
invention are possible. The invention is limited only by the
scope of the appended claims.

What is claimed is:
1. A computer-implemented method for variant configu-
ration, comprising:
using a computer, loading a dependency tree comprising
Boolean expressions describing an input selection con-
dition into memory in one of disjunctive normal form
(DNF) and conjunctive normal form (CNF);

joining concrete configuration values from input configu-
ration data with the dependency tree, and comparing
values of one or more literals;

aggregating the comparison results and aggregating the

aggregation results, using an AND-group with a mini-
mum function and an OR-group with a maximum
function in an alternating sequence ordered corre-
sponding to the chosen normal form; and

outputting the result of the selection condition evaluation

for the concrete configuration;

wherein each separate branch of the dependency tree

comprises Boolean expressions selectively cast in one
of DNF and CNF according to which normal form most
reduces the number of Boolean expressions in each
branch.

2. The method of claim 1 further comprising evaluating
multiple Boolean expressions at least one of simultaneously
and in increasing complexity order.

3. The method of claim 1 further comprising evaluating
multiple aggregations simultaneously.

4. The method of claim 1 further comprising generalizing
the dependency tree to evaluate added terms comprising at
least one of a non-fixed-value literal, a multi-valued literal,
an in-list, and a variant table, by translating and integrating
each added term into the sequence of aggregations.

5. The method of claim 4 further comprising evaluating
the added terms separately at each leaf level of the gener-
alized dependency tree.

6. The method of claim 1 further comprising evaluating
multiple dependency trees simultaneously by evaluating
string operations and numeric operations in separate depen-
dency trees.

7. A system for variant configuration, comprising:

a processor executing non-transitory instructions to:

load a dependency tree comprising Boolean expres-
sions describing an input selection condition into
memory in one of disjunctive normal form (DNF)
and conjunctive normal form (CNF);

join concrete configuration values from input configu-
ration data with the dependency tree, and comparing
values of one or more literals;

aggregate the comparison results and aggregate the
aggregation results, using an AND-group with a
minimum function and an OR-group with a maxi-
mum function in an alternating sequence ordered
corresponding to the chosen normal form; and

output the result of the selection condition evaluation
for the concrete configuration;

10

15

20

25

30

40

45

50

55

60

12

wherein each separate branch of the dependency tree
comprises Boolean expressions selectively cast in one
of DNF and CNF according to which normal form most
reduces the number of Boolean expressions in each
branch.

8. The system of claim 7 wherein the processor evaluates
multiple Boolean expressions at least one of simultaneously
and in increasing complexity order.

9. The system of claim 7 wherein the processor evaluates
multiple aggregations simultaneously.

10. The system of claim 7 wherein the processor further
generalizes the dependency tree to evaluate added terms
comprising at least one of a non-fixed-value literal, a multi-
valued literal, an in-list, and a variant table, by translating
and integrating each added term into the sequence of aggre-
gations.

11. The system of claim 10 wherein the processor evalu-
ates the added terms separately at each leaf level of the
generalized dependency tree.

12. The system of claim 7 wherein the processor evaluates
multiple dependency trees simultaneously by evaluating
string operations and numeric operations in separate depen-
dency trees.

13. A non-transitory computer readable medium storing
instructions that,

when executed by a processor, perform a variant configu-

ration method comprising:

loading a dependency tree comprising Boolean expres-
sions describing an input selection condition into
memory in one of disjunctive normal form (DNF)
and conjunctive normal form (CNF);

joining concrete configuration values from input con-
figuration data with the dependency tree, and com-
paring values of one or more literals;

aggregating the comparison results and aggregating the
aggregation results, using an AND-group with a
minimum function and an OR-group with a maxi-
mum function in an alternating sequence ordered
corresponding to the chosen normal form; and

outputting the result of the selection condition evalu-
ation for the concrete configuration;

wherein each separate branch of the dependency tree

comprises Boolean expressions selectively cast in one
of DNF and CNF according to which normal form most
reduces the number of Boolean expressions in each
branch.

14. The medium of claim 13 further comprising instruc-
tions for evaluating multiple Boolean expressions at least
one of simultaneously and in increasing complexity order.

15. The medium of claim 13 further comprising instruc-
tions for generalizing the dependency tree to evaluate added
terms comprising at least one of a non-fixed-value literal, a
multi-valued literal, an in-list, and a variant table, by trans-
lating and integrating each added term into the sequence of
aggregations.

16. The medium of claim 15 further comprising instruc-
tions for evaluating the added terms separately at each leaf
level of the generalized dependency tree.

17. The medium of claim 13 further comprising instruc-
tions for evaluating multiple dependency trees simultane-
ously by evaluating string operations and numeric opera-
tions in separate dependency trees.

#* #* #* #* #*

